梯度、散度、旋度和拉普拉斯算子
fengxiaot Lv4

几何上,一个正交坐标系定义为一组正交坐标 qiq^i,其等值曲面都以直角相交。正交坐标的度规张量无非对角项。常见的正交曲线坐标系包括笛卡尔坐标系、柱坐标系和球坐标系。本文给出这些坐标系中梯度、散度、旋度和拉普拉斯算子的形式,以供快速查阅。

正交曲线坐标系

标度因子 HH

dr=rq1dq1+rq2dq2+rq3dq3\mathrm{d} \boldsymbol{r}=\frac{\partial \boldsymbol{r}}{\partial q_{1}} \mathrm{d} q_{1}+\frac{\partial \boldsymbol{r}}{\partial q_{2}} \mathrm{d} q_{2}+\frac{\partial \boldsymbol{r}}{\partial q_{3}} \mathrm{d} q_{3}

{rq1=(xq1)2+(yq1)2+(zq1)2=H1rq2=(xq2)2+(yq2)2+(zq2)2=H2rq1=(xq3)2+(yq3)2+(zq3)2=H3\left\{\begin{array}{l} \left|\dfrac{\partial \boldsymbol{r}}{\partial q_{1}}\right|=\sqrt{\left(\dfrac{\partial x}{\partial q_{1}}\right)^{2}+\left(\dfrac{\partial y}{\partial q_{1}}\right)^{2}+\left(\dfrac{\partial z}{\partial q_{1}}\right)^{2}}=H_{1} \\ \left|\dfrac{\partial \boldsymbol{r}}{\partial q_{2}}\right|=\sqrt{\left(\dfrac{\partial x}{\partial q_{2}}\right)^{2}+\left(\dfrac{\partial y}{\partial q_{2}}\right)^{2}+\left(\dfrac{\partial z}{\partial q_{2}}\right)^{2}}=H_{2} \\ \left|\dfrac{\partial \boldsymbol{r}}{\partial q_{1}}\right|=\sqrt{\left(\dfrac{\partial x}{\partial q_{3}}\right)^{2}+\left(\dfrac{\partial y}{\partial q_{3}}\right)^{2}+\left(\dfrac{\partial z}{\partial q_{3}}\right)^{2}}=H_{3} \end{array}\right.

弧长

dr=ds=H12dq12+H22dq22+H32dq32|\mathrm{d} \boldsymbol{r}|=\mathrm{d} s=\sqrt{H_{1}^{2} \mathrm{d} q_{1}^{2}+H_{2}^{2} \mathrm{d} q_{2}^{2}+H_{3}^{2} \mathrm{d} q_{3}^{2}}

面积元

{dσ1=H2H3dq2dq3dσ2=H1H3dq1dq3dσ3=H2H1dq2dq1\left\{\begin{array}{l} \mathrm{d} \sigma_{1}=H_{2} H_{3} \mathrm{d} q_{2} \mathrm{d} q_{3} \\ \mathrm{d} \sigma_{2}=H_{1} H_{3} \mathrm{d} q_{1} \mathrm{d} q_{3} \\ \mathrm{d} \sigma_{3}=H_{2} H_{1} \mathrm{d} q_{2} \mathrm{d} q_{1} \end{array}\right.

体积元

dV=ds1ds2ds3=H1H2H3dq1dq2dq3\mathrm{d} V=\mathrm{d} s_{1} \mathrm{d} s_{2} \mathrm{d} s_{3}=H_{1} H_{2} H_{3} \mathrm{d} q_{1} \mathrm{d} q_{2} \mathrm{d} q_{3}

梯度

f=1H1fq1e1+1H2fq2e2+1H3fq3e3\nabla f=\frac{1}{H_{1}} \frac{\partial f}{\partial q_{1}} \boldsymbol{e}_{1}+\frac{1}{H_{2}} \frac{\partial f}{\partial q_{2}} \boldsymbol{e}_{2}+\frac{1}{H_{3}} \frac{\partial f}{\partial q_{3}} \boldsymbol{e}_{3}

散度

A=1H1H2H3((A1H2H3)q1+(A2H1H3)q2+(A3H2H1)q3)\nabla \cdot \boldsymbol{A}=\frac{1}{H_{1} H_{2} H_{3}}\left(\frac{\partial\left(A_{1} H_{2} H_{3}\right)}{\partial q_{1}}+\frac{\partial\left(A_{2} H_{1} H_{3}\right)}{\partial q_{2}}+\frac{\partial\left(A_{3} H_{2} H_{1}\right)}{\partial q_{3}}\right)

旋度

×A=1H1H2H3H1e1H2e2H3e3q1q2q3H1A1H2A2H3A3\nabla \times \boldsymbol{A}=\frac{1}{H_{1} H_{2} H_{3}}\begin{vmatrix} H_{1} \boldsymbol{e}_{1} & H_{2} \boldsymbol{e}_{2} & H_{3} \boldsymbol{e}_{3} \\ \frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\ H_{1} A_{1} & H_{2} A_{2} & H_{3} A_{3} \end{vmatrix}

拉普拉斯算子

Δf=1H1H2H3[q1(H2H3H1fq1)+q2(H1H3H2fq2)+q3(H2H1H3fq3)]\Delta f=\frac{1}{H_{1} H_{2} H_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{H_{2} H_{3}}{H_{1}} \frac{\partial f}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{H_{1} H_{3}}{H_{2}} \frac{\partial f}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{H_{2} H_{1}}{H_{3}} \frac{\partial f}{\partial q_{3}}\right)\right]


直角坐标系

梯度

f(x,y,z)=fxi+fyj+fzk\nabla f(x, y, z)=\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k}

散度

A=Axx+Ayy+Azz\nabla \cdot \boldsymbol{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}

旋度

×A=ijkxyzAxAyAz\nabla \times \boldsymbol{A}=\begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix}

拉普拉斯算子

Δf=2fx2+2fy2+2fz2\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}


柱坐标系

梯度

f(ρ,φ,z)=fρeρ+1ρfφeφ+fzez\nabla f(\rho, \varphi, z)=\frac{\partial f}{\partial \rho} \boldsymbol{e}_{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \varphi} \boldsymbol{e}_{\varphi}+\frac{\partial f}{\partial z} \boldsymbol{e}_{z}

散度

A=1ρρ(ρAρ)+1ρAφφ+Azz\nabla \cdot \boldsymbol{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi}+\frac{\partial A_{z}}{\partial z}

旋度

×A=1ρeρeφ1ρezρφzAρρAφAz\nabla \times \boldsymbol{A}=\begin{vmatrix} \frac{1}{\rho} \boldsymbol{e}_{\rho} & \boldsymbol{e}_{\varphi} & \frac{1}{\rho} \boldsymbol{e}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\varphi} & A_{z} \end{vmatrix}

拉普拉斯算子

Δf=1ρρ(ρfρ)+1ρ22fφ2+2fz2\Delta f=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}


球坐标系

梯度

f(r,θ,ϕ)=frer+1rfθeθ+1rsinθfϕeϕ\nabla f(r, \theta, \phi)=\frac{\partial f}{\partial r} \boldsymbol{e}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \boldsymbol{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \boldsymbol{e}_{\phi}

散度

A=1r2r(r2Ar)+1rsinθθ(sinθAθ)+1rsinθAϕϕ\nabla \cdot \boldsymbol{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}

旋度

×A=1r2sinθerreθrsinθeϕrθϕArrAθrsinθAϕ\nabla \times \boldsymbol{A}=\frac{1}{r^{2} \sin \theta}\begin{vmatrix} \boldsymbol{e}_{r} & r \boldsymbol{e}_{\theta} & r \sin \theta \boldsymbol{e}_{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_{r} & r A_{\theta} & r \sin \theta A_{\phi} \end{vmatrix}

拉普拉斯算子

Δf=1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fϕ2\Delta f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}