Quantum Optics IX Optical Dipole Trap
fengxiaot Lv4

In this article, we introduce the basic concepts of trapping neutral atoms using optical dipole potentials created by far-detuned laser light. In this regime, optical excitation is strongly suppressed, and the radiation-pressure force from photon scattering becomes negligible compared to the dipole (gradient) force.

Optical Dipole Trap

There are several common mechanisms that can trap cold atoms

  1. Radiation-pressure trap (e.g. optical molasses)

    • Typical temperature: 10 μK\lesssim 10~\mu\mathrm{K} with sub-Doppler techniques
    • Limitations: the photon-recoil energy sets a lower bound on the temperature.
  2. Magnetic trap

    • Principle: state-dependent force on the atomic magnetic dipole moment in an inhomogeneous magnetic field
    • Typical trap depth: on the order of 100 mK\sim 100~\mathrm{mK}
    • Cooling: evaporative cooling
    • Limitation: only certain Zeeman sublevels (low-field seekers) can be trapped
  3. Optical dipole trap

    • Principle: interaction of the induced electric dipole moment with far-detuned lightddd
    • Typical temperatures: 1 mK\lesssim 1~\mathrm{mK} when loaded directly from a MOT, and down to the μK\mu\mathrm{K} regime after further cooling

Optical Tweezer

An optical tweezer is a tightly focused optical dipole trap, where the beam waist is on the order of the optical wavelength.

When an atom is illuminated by a laser light, the external electric field E\boldsymbol{E} induces an atomic dipole moment d\boldsymbol{d}

d=αE=eR\boldsymbol{d} = \alpha \boldsymbol{E} = -e\boldsymbol{R}

where E(x,t)=E0cos(kxωt)\boldsymbol{E}(\boldsymbol{x},t) = \boldsymbol{E}_0 \cos (\boldsymbol{k}\cdot \boldsymbol{x}-\omega t) is an oscillating field, α\alpha is the complex polarizability that may depend on the driving frequency ω\omega.

U=dE=12Re(α)E2=1cε0Re(α)I2U = -\boldsymbol{d}\cdot \boldsymbol{E} = - \frac{1}{2} \mathrm{Re}(\alpha) |\boldsymbol{E}|^2 = - \frac{1}{c\varepsilon_0} \mathrm{Re}(\alpha) I^2

To evaluate the complex polarizability α\alpha, we can use either semiclassical model or quantum model of light matter interaction.

Consider a two-level system without dissipation

H=12ω0σz+12Ω(eiωt+eiωt)(σ+σ)H = \frac{1}{2} \hbar \omega_0 \sigma_z + \frac{1}{2}\hbar \Omega (\mathrm{e}^{\mathrm{i}\omega t} + \mathrm{e}^{-\mathrm{i}\omega t}) (\sigma^\dagger + \sigma)

The energy shift of ground state is

U=Ω24δU=\frac{\Omega^2}{4\delta}

Plugging in Ω2=gdEe2/2=E22gϵ^de2\Omega^2 = |\langle g | \boldsymbol{d} \cdot \boldsymbol{E} | e \rangle|^2 / \hbar^2 =\frac{|\boldsymbol{E}|^2}{\hbar^2} |\langle g | \hat{\boldsymbol{\epsilon}} \cdot \boldsymbol{d} | e \rangle|^2, I=12cε0E2I = \frac{1}{2} c \varepsilon_0 |\boldsymbol{E}|^2 and Γ=ω033πε0c3gϵ^de2\Gamma = \frac{\omega_0^3}{3\pi\varepsilon_0 \hbar c^3}|\langle g | \hat{\boldsymbol{\epsilon}} \cdot \boldsymbol{d} | e \rangle|^2, the dipole potential can be written as

Udip=3πc2Γ2ω03IδU_\text{dip} = \frac{3\pi c^2 \Gamma}{2\omega_0^3} \frac{I}{\delta}

For a Gaussian beam trap

I=2Pπw2(z)exp[2r2w2(z)]I = \frac{2P}{\pi w^2(z)} \exp\left[ -2 \frac{r^2}{w^2(z)} \right]

where w(z)=w01+z2/zR2w(z) = w_0 \sqrt{1 + z^2/z_R^2} and zRz_R is the Rayleigh length. At origin, the laser intensity can be approximated as

I2Pπw02(1z2zR22r2w02)I \approx \frac{2P}{\pi w^2_0} \left(1 - \frac{z^2}{z_R^2} - 2 \frac{r^2}{w_0^2}\right)

Therefore, the dipole trap potential is

Udip=3πc2Γ2ω031δ2Pπw02(1z2zR22r2w02):=U0(1z2zR22r2w02)U_\text{dip} = \frac{3\pi c^2 \Gamma}{2\omega_0^3} \frac{1}{\delta} \frac{2P}{\pi w^2_0} \left(1 - \frac{z^2}{z_R^2} - 2 \frac{r^2}{w_0^2}\right) := U_0 \left(1 - \frac{z^2}{z_R^2} - 2 \frac{r^2}{w_0^2}\right)