Quantum Computing III Quantum Gates in Trapped Ions
fengxiaot Lv4

Trapped-ion quantum computing relies on the controlled interaction between an ion’s internal two-level structure and its quantized motion in the trap. By driving the ion with laser fields near the carrier and motional sidebands, we can engineer spin-dependent forces and geometric phase evolutions that form the essential quantum gates.

Monochromatic field

In Schrodinger picture, the Hamiltonian of the atom’s internal state and motional state is

Hatom(S)=12ω0σz=12ω0(eegg)=12ω0(σσσσ)H_\text{atom}^\mathrm{(S)} = \frac{1}{2} \hbar \omega_0 \sigma_z = \frac{1}{2} \hbar \omega_0 (\ket{e}\bra{e} - \ket{g}\bra{g}) = \frac{1}{2} \hbar\omega_0 (\sigma^\dagger\sigma - \sigma\sigma^\dagger)

Hmotion(S)=ν(aa+12)H_\text{motion}^\mathrm{(S)} = \hbar \nu \left(a^\dagger a+\frac{1}{2} \right)

The quantized motional modes can be in any specific direction (i.e., ax,ay,aza_x, a_y, a_z), since they are three-dimensionally trapped. For example, if the incident beam comes from the xx direction, the ions will consequently oscillates in the xx direction, experiencing the changing of electromagnetic field with respect to xx, thus only axaxa_x^\dagger a_x are effective.

The coupling Hamiltonian describing the interaction between the ion and the electromagnetic field is

Hint(S)=12Ω0(eg+ge)[ei(kx^ωt+ϕ)+ei(kx^ωt+ϕ)]H_\text{int}^\mathrm{(S)}=\frac{1}{2} \hbar \Omega_0 (\ket{e}\bra{g} + \ket{g}\bra{e}) \left[\mathrm{e}^{\mathrm{i}(k \hat{x} - \omega t +\phi)} + \mathrm{e}^{-\mathrm{i}(k \hat{x} - \omega t +\phi)}\right]

where x^\hat{x} is the quantized position of ions in the Schrodinger picture, E=E0[ei(kxωt+ϕ)+ei(kxωt+ϕ)]\boldsymbol{E} = \boldsymbol{E}_0 \left[\mathrm{e}^{\mathrm{i}(k x - \omega t +\phi)} + \mathrm{e}^{-\mathrm{i}(kx - \omega t +\phi)}\right] is a classical electromagnetic field running in the xx direction (which implies the field itself is in the yy or zz direction).

/* Important: The electromagnetic field is not quantized! */

Introducing the Lamb-Dicke parameter η=k2mν\eta = k\sqrt{\frac{\hbar}{2m\nu}}, we can rewrite the position operator as

kx^=η(a+a)k\hat{x} = \eta \,(a+a^\dagger)

and the interaction Hamiltonian

Hint(S)=12Ω0(σ+σ){ei[η(a+a)ωt+ϕ]+ei[η(a+a)ωt+ϕ]}H_\text{int}^\mathrm{(S)}=\frac{1}{2} \hbar \Omega_0 (\sigma^\dagger +\sigma)\left\{\mathrm{e}^{\mathrm{i}[\eta(a+a^\dagger) - \omega t +\phi]} + \mathrm{e}^{-\mathrm{i}[\eta(a+a^\dagger) - \omega t +\phi]}\right\}

Transforming the into the interaction picture, the Hamiltonian is

Hint(I)=eiH0tHint(S)eiH0t=12Ω0eiHAt(σ+σ)eiHAteiHMt{ei[η(a+a)ωt+ϕ]+ei[η(a+a)ωt+ϕ]}eiHMt\begin{aligned} H_\text{int}^\mathrm{(I)} &= \mathrm{e}^{\mathrm{i}H_0 t} H_\text{int}^\mathrm{(S)} \mathrm{e}^{-\mathrm{i}H_0 t} \\ &= \frac{1}{2} \hbar \Omega_0 \,\mathrm{e}^{\mathrm{i}H_\text{A} t} (\sigma^\dagger +\sigma)\mathrm{e}^{-\mathrm{i}H_\text{A} t} \otimes \mathrm{e}^{\mathrm{i}H_\text{M} t} \left\{\mathrm{e}^{\mathrm{i}[\eta(a+a^\dagger) - \omega t +\phi]} + \mathrm{e}^{-\mathrm{i}[\eta(a+a^\dagger) - \omega t +\phi]}\right\} \mathrm{e}^{-\mathrm{i}H_\text{M} t} \end{aligned}

Taking advantage of Baker-Campbell-Hausdorff formula, the Hamiltonian is

Hint(I)=12Ω0(σeiω0t+σeiω0t){ei[η(aeiνt+aeiνt)ωt+ϕ]+ei[η(aeiνt+aeiνt)ωt+ϕ]}H_\text{int}^\mathrm{(I)} = \frac{1}{2} \hbar \Omega_0 (\sigma^\dagger \mathrm{e}^{\mathrm{i} \omega_0 t} + \sigma \mathrm{e}^{-\mathrm{i} \omega_0 t}) \otimes \left\{\mathrm{e}^{\mathrm{i}[\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) - \omega t +\phi]} + \mathrm{e}^{-\mathrm{i}[\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) - \omega t +\phi]}\right\}

Due to micromotion, the Rabi frequency must be corrected. The effective Rabi frequency Ω\Omega is

Ω=Ω01+q/2\Omega = \frac{\Omega_0}{1+q/2}

where qq is a parameter in the Mathieu equation

d2xdξ2+[a2qcos(2ξ)]x=0\frac{\mathrm{d}^2 x}{\mathrm{d}\xi^2}+[a-2q \cos(2\xi)]x=0

Typically, a103a \sim 10^{-3}, q20.015q^2 \sim 0.015, β=a+q2/20.09\beta = \sqrt{a+q^2/2}\sim 0.09, ν=βωRF\nu = \beta \omega_\text{RF}.

Defining the detuning δ:=ωω0\delta := \omega - \omega_0 , the Hamiltonian takes the form under the RWA (Rotating Wave Approximation):

Hint(I)=12Ω[σeiϕeiδteiη(aeiνt+aeiνt)+σeiϕeiδteiη(aeiνt+aeiνt)]H_\text{int}^\mathrm{(I)} = \frac{1}{2} \hbar \Omega \left[\sigma^\dagger \mathrm{e}^{\mathrm{i}\phi}\mathrm{e}^{-\mathrm{i} \delta t} \otimes \mathrm{e}^{\mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t})} + \sigma \mathrm{e}^{-\mathrm{i}\phi} \mathrm{e}^{\mathrm{i} \delta t} \otimes\mathrm{e}^{-\mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t})} \right]

Hint(I)=12Ωσeiϕeiδtexp[iη(aeiνt+aeiνt)]+h.c.H_\text{int}^\mathrm{(I)} = \frac{1}{2} \hbar \Omega \sigma^\dagger \mathrm{e}^{\mathrm{i}\phi}\mathrm{e}^{-\mathrm{i} \delta t} \exp \left[\mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) \right] + \mathrm{h.c.}

The expression of the Hamiltonian can be further simplified in the Lamb-Dicke regime η(a+a)21\eta \sqrt{\langle (a+a^\dagger)^2 \rangle} \ll 1:

exp[iη(aeiνt+aeiνt)]=1+iη(aeiνt+aeiνt)η22(aeiνt+aeiνt)2+ο(η3)\exp \left[\mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) \right] = 1 + \mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) - \frac{\eta^2}{2} (a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t})^2 +\omicron(\eta^3)

Hint(I)=12Ωσeiϕeiδt[1+iη(aeiνt+aeiνt)]+h.c.H_\text{int}^\mathrm{(I)} = \frac{1}{2} \hbar \Omega \sigma^\dagger \mathrm{e}^{\mathrm{i}\phi}\mathrm{e}^{-\mathrm{i} \delta t} \left[1+\mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) \right] + \mathrm{h.c.}

By changing the detuning δ\delta, we can obtain

  • δ=0\delta = 0 , carrier resonance, Hcar(I)=Ω2(σeiϕ+σeiϕ)=Ω2σeiϕ+h.c.H_\text{car}^\mathrm{(I)} = \frac{\hbar \Omega}{2} (\sigma^\dagger \mathrm{e}^{\mathrm{i}\phi} + \sigma \mathrm{e}^{-\mathrm{i}\phi}) = \frac{\hbar \Omega}{2} \sigma^\dagger \mathrm{e}^{\mathrm{i}\phi} + \mathrm{h.c.}
  • δ=ν\delta = -\nu, first red sideband, Hrsb(I)=iηΩ2(σaeiϕσaeiϕ)=iηΩ2σaeiϕ+h.c.H_\text{rsb}^\mathrm{(I)} = \mathrm{i} \eta \frac{\hbar \Omega}{2} (\sigma^\dagger a \mathrm{e}^{\mathrm{i}\phi}- \sigma a^\dagger \mathrm{e}^{-\mathrm{i}\phi}) =\mathrm{i} \eta \frac{\hbar \Omega}{2} \sigma^\dagger a \mathrm{e}^{\mathrm{i}\phi}+ \mathrm{h.c.}
  • δ=ν\delta = \nu, first blue sideband, Hbsb(I)=iηΩ2(σaeiϕσaeiϕ)=iηΩ2σaeiϕ+h.c.H_\text{bsb}^\mathrm{(I)} = \mathrm{i} \eta \frac{\hbar \Omega}{2} (\sigma^\dagger a^\dagger \mathrm{e}^{\mathrm{i}\phi}- \sigma a \mathrm{e}^{-\mathrm{i}\phi}) =\mathrm{i} \eta \frac{\hbar \Omega}{2} \sigma^\dagger a^\dagger \mathrm{e}^{\mathrm{i}\phi}+ \mathrm{h.c.}

Bichromatic Field

/* We will set the interaction picture as default. The superscript (I) will be omitted from now on. */

On-resonantly driven harmonic oscillator

Two superimposed laser fields at positive and negative detuning ±ν\pm \nu from a common center frequency, respectively, produce a bichromatic light field. The Hamiltonian is

Hbic=iηΩ2(σaeiϕrσaeiϕr+σaeiϕbσaeiϕb)H_\text{bic} = \mathrm{i} \eta \frac{\hbar \Omega}{2} (\sigma^\dagger a \mathrm{e}^{\mathrm{i}\phi_r}- \sigma a^\dagger \mathrm{e}^{-\mathrm{i}\phi_r} + \sigma^\dagger a^\dagger \mathrm{e}^{\mathrm{i}\phi_b}- \sigma a \mathrm{e}^{-\mathrm{i}\phi_b})

Note: We only consider the superposition of the first sideband Hamiltonians in the expression above. In fact, the complete interaction Hamiltonian should be

Hint=Hcar+Hrsb+Hbsb=Hcar+HbicH_\text{int} = H_\text{car} + H_\text{rsb} + H_\text{bsb} = H_\text{car}+H_\text{bic}

Hint=Ωcos(νt+ϕ)(σeiϕ++σeiϕ+)+iηΩ2(σaeiϕrσaeiϕr+σaeiϕbσaeiϕb)H_\text{int} = \hbar\Omega \cos (\nu t + \phi_-) (\sigma^\dagger \mathrm{e}^{\mathrm{i}\phi_+} + \sigma \mathrm{e}^{-\mathrm{i}\phi_+}) +\mathrm{i} \eta \frac{\hbar \Omega}{2} (\sigma^\dagger a \mathrm{e}^{\mathrm{i}\phi_r}- \sigma a^\dagger \mathrm{e}^{-\mathrm{i}\phi_r} + \sigma^\dagger a^\dagger \mathrm{e}^{\mathrm{i}\phi_b}- \sigma a \mathrm{e}^{-\mathrm{i}\phi_b})

Though carrier resonance term HcarH_\text{car} oscillates rapidly with frequency ν\nu thus obliged to be omitted under RWA, it has larger order of magnitude Ω\Omega compared with sideband terms HbicH_\text{bic} with an order of magnitude ηΩ\eta \Omega. Therefore, the carrier resonance will cause infidelity. We will estimate its effect later. In the following discussion, we still use HintHbicH_\text{int} \approx H_\text{bic}.

Utilizing the relationship between ladder operators and Pauli operators

σ=σx+iσyσ=σxiσyX=12(a+a)P=12i(aa)\begin{gathered} \sigma^\dagger = \sigma_x + \mathrm{i} \sigma_y \qquad \sigma = \sigma_x - \mathrm{i} \sigma_y \\ X = \frac{1}{2} (a+a^\dagger) \qquad P = \frac{1}{2\mathrm{i}}(a-a^\dagger) \end{gathered}

and defining the following parameters

ϕ+=ϕb+ϕr2ϕ=ϕbϕr2\phi_+ = \frac{\phi_b + \phi_r}{2} \qquad \phi_- = \frac{\phi_b - \phi_r}{2}

the Hamiltonian of bichromatic light field could take these alternative forms:

Hbic=ηΩ[(a+a)cosϕi(aa)sinϕ](σxsinϕ++σycosϕ+)H_\text{bic} = - \eta \hbar \Omega \left[(a+a^\dagger) \cos \phi_- -\mathrm{i} (a-a^\dagger)\sin\phi_-\right] (\sigma_x \sin\phi_+ +\sigma_y\cos\phi_+)

Hbic=2ηΩ(Xcosϕ+Psinϕ)(σxsinϕ++σycosϕ+)H_\text{bic} = -2\eta\hbar\Omega (X \cos\phi_- + P\sin \phi_-) (\sigma_x \sin\phi_+ +\sigma_y\cos\phi_+)

Hbic=ηΩ(aeiϕ+aeiϕ)σπ/2ϕ+H_\text{bic} = -\eta\hbar\Omega \left(a \mathrm{e}^{-\mathrm{i}\phi_-} + a^\dagger \mathrm{e}^{\mathrm{i}\phi_-}\right) \sigma_{\pi/2-\phi_+}

where σϕ=σxcosϕ+σysinϕ\sigma_\phi =\sigma_x \cos\phi+\sigma_y \sin\phi is the Pauli matrix on the equatorial plane, with eigenvectors +ϕ\ket{+}_\phi and ϕ\ket{-}_\phi pointing at (cosϕ,sinϕ,0)(\cos\phi,\sin\phi,0) and (cosϕ,sinϕ,0)(-\cos\phi,-\sin\phi,0) respectively on the Bloch sphere.

The evolution operator (in the interaction picture) is

UI=exp(iHbict)=exp[iηΩt(aeiϕ+aeiϕ)σπ/2ϕ+]=D(ασπ/2ϕ+)U^\mathrm{I} = \exp\left(-\frac{\mathrm{i}}{\hbar}H_\text{bic}t\right) = \exp\left[\mathrm{i}\eta\Omega t (a \mathrm{e}^{-\mathrm{i}\phi_-} + a^\dagger \mathrm{e}^{\mathrm{i}\phi_-}) \sigma_{\pi/2-\phi_+}\right] = D(\alpha \sigma_{\pi/2-\phi_+} )

where α=iηΩteiϕ\alpha = \mathrm{i}\eta\Omega t \,\mathrm{e}^{\mathrm{i}\phi_-}. /* The displacement operator is D(α)=exp(αaαa)D(\alpha) = \exp(\alpha a^\dagger-\alpha^\star a). */

Off-resonantly driven harmonic oscillator

Two superimposed laser fields at positive and negative detuning ±(ν+Δ)\pm (\nu+\Delta) from a common center frequency, respectively, produce a bichromatic light field. The Hamiltonian is

Hbic=iηΩ2(σaeiΔt+iϕrσaeiΔtiϕr+σaeiΔt+iϕbσaeiΔtiϕb)H_\text{bic} = \mathrm{i} \eta \frac{\hbar \Omega}{2} (\sigma^\dagger a \mathrm{e}^{\mathrm{i} \Delta t +\mathrm{i}\phi_r}- \sigma a^\dagger \mathrm{e}^{-\mathrm{i}\Delta t -\mathrm{i}\phi_r} + \sigma^\dagger a^\dagger \mathrm{e}^{-\mathrm{i}\Delta t+\mathrm{i}\phi_b}- \sigma a \mathrm{e}^{\mathrm{i}\Delta t-\mathrm{i}\phi_b})

which is equivalent to a transformation with ϕbϕbΔt\phi_b \to \phi_b - \Delta t and ϕrϕr+Δt\phi_r \to \phi_r +\Delta t. And ϕ+,ϕ\phi_+, \phi_- are consequently time-dependent

ϕ+=ϕb+ϕr2ϕ+ϕ=ϕbϕr2ϕΔt\phi_+ = \frac{\phi_b + \phi_r}{2}\to \phi_+ \qquad \phi_- = \frac{\phi_b - \phi_r}{2} \to \phi_- - \Delta t

The interaction Hamiltonian takes the form

Hbic=ηΩ(aeiΔtiϕ+aeiΔt+iϕ)σπ/2ϕ+H_\text{bic} = -\eta\hbar\Omega \left(a \mathrm{e}^{\mathrm{i}\Delta t-\mathrm{i}\phi_-} + a^\dagger \mathrm{e}^{-\mathrm{i}\Delta t+\mathrm{i}\phi_-}\right) \sigma_{\pi/2-\phi_+}

where σϕ=σxcosϕ+σysinϕ\sigma_\phi =\sigma_x \cos\phi+\sigma_y \sin\phi is the Pauli matrix on the equatorial plane, with eigenvectors +ϕ\ket{+}_\phi and ϕ\ket{-}_\phi pointing at (cosϕ,sinϕ,0)(\cos\phi,\sin\phi,0) and (cosϕ,sinϕ,0)(-\cos\phi,-\sin\phi,0) respectively on the Bloch sphere.

Since the Hamiltonian is time-dependent, we must use the Magnus expansion to calculate the evolution operator

UI=exp(i0tHintdt1220tdt10t1dt2[Hint(t1),Hint(t2)]+)U^\mathrm{I} = \exp\left(-\frac{\mathrm{i}}{\hbar} \int_0^t H_\text{int}\,\mathrm{d}t -\frac{1}{2\hbar^2} \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \, [H_\text{int}(t_1),H_\text{int}(t_2)] +\cdots\right)

Now, we must fix ϕ+\phi_+ to ±π/2\pm \pi/2, which will lead to σπ/2ϕ+=σx\sigma_{\pi/2-\phi_+} = \sigma_x . Or, we fix ϕ+\phi_+ to 0, which will lead to σπ/2ϕ+=σy\sigma_{\pi/2-\phi_+} = \sigma_y . The reason is that σϕ\sigma_\phi does not commute with itself, yielding a mix of σx,σy,σz\sigma_x,\sigma_y,\sigma_z when calculating commutator [Hint(t1),Hint(t2)][H_\text{int}(t_1),H_\text{int}(t_2)].

We choose σx\sigma_x here. Then the first-order term and the second-order term are

exp(i0tHintdt)=exp(ηΩΔ[aeiϕ(1eiΔt)aeiϕ(1eiΔt)]σx)\exp\left(-\frac{\mathrm{i}}{\hbar} \int_0^t H_\text{int}\,\mathrm{d}t\right) = \exp \left( \frac{\eta\Omega}{\Delta} \left[a^\dagger \mathrm{e}^{\mathrm{i}\phi_-} (1-\mathrm{e}^{-\mathrm{i}\Delta t})-a \mathrm{e}^{-\mathrm{i}\phi_-}(1-\mathrm{e}^{\mathrm{i}\Delta t})\right] \sigma_x\right)

exp(1220tdt10t1dt2[Hint(t1),Hint(t2)])=exp[i(ηΩΔ)2(ΔtsinΔt)]\exp\left(-\frac{1}{2\hbar^2} \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \, [H_\text{int}(t_1),H_\text{int}(t_2)]\right) = \exp \left[ -\mathrm{i}\left(\frac{\eta\Omega}{\Delta}\right)^2 (\Delta t - \sin \Delta t)\right]

Using Baker-Campbell-Hausdorff formula eA+B=eAeBe[A,B]/2\mathrm{e}^{A+B} = \mathrm{e}^A \mathrm{e}^B \mathrm{e}^{-[A,B]/2}, we find the commutator term e[A,B]/2\mathrm{e}^{-[A,B]/2} is actually zero. The evolution operator is simply the product of the first order term and the second order term.

UI=exp(ηΩΔ[aeiϕ(1eiΔt)aeiϕ(1eiΔt)]σx)exp[i(ηΩΔ)2(ΔtsinΔt)]U^\mathrm{I} = \exp \left( \frac{\eta\Omega}{\Delta} \left[a^\dagger \mathrm{e}^{\mathrm{i}\phi_-} (1-\mathrm{e}^{-\mathrm{i}\Delta t})-a \mathrm{e}^{-\mathrm{i}\phi_-}(1-\mathrm{e}^{\mathrm{i}\Delta t})\right] \sigma_x\right) \exp \left[ -\mathrm{i}\left(\frac{\eta\Omega}{\Delta}\right)^2 (\Delta t - \sin \Delta t)\right]

The evolution operator can be decomposed into a displacement operator and a global phase

UI=D[α(t)σx]eiΦ(t)U^I = D[\alpha(t) \sigma_x] \, \mathrm{e}^{-\mathrm{i}\Phi(t)}

α(t)=ηΩΔ(1eiΔt)eiϕΦ(t)=(ηΩΔ)2(ΔtsinΔt)\alpha(t)= \frac{\eta\Omega}{\Delta} (1-\mathrm{e}^{-\mathrm{i}\Delta t}) \mathrm{e}^{\mathrm{i}\phi_-} \qquad \Phi(t) =\left(\frac{\eta\Omega}{\Delta}\right)^2 (\Delta t - \sin \Delta t)

  • For the displacement parameter, ηΩ/Δ\eta \Omega / \Delta controls the norm and eiϕ\mathrm{e}^{\mathrm{i}\phi_-} controls the phase. The ion’s motion encloses a cycle in the phase space, with a period 2π/Δ2\pi / \Delta.
  • For the global phase, at time t=2πN/Δt = 2\pi N/\Delta, the accumulated phase is 2πN(ηΩΔ)22\pi N \left(\frac{\eta\Omega}{\Delta}\right)^2.
  • The Pauli operator acting on the internal state space makes the displacement spin-dependent. For +x\ket{+}_x , the motional state will be displaced by α(t)\alpha(t) . While for x\ket{-}_x , the motional state will be displaced by α(t)-\alpha(t).

Classical Picture: Driven Oscillator

Now we explain that, under the interaction between a bichromatic light field and an ion, the effect on the ion’s motion is equivalent to the forced vibration of a classical harmonic oscillator. Because the direction of the force on the ion depends on its internal state, this effect is also called a spin-dependent force.

First, let us review the model of a driven oscillator. Consider an undamped oscillator driven by a periodic external force F(t)=Fcos(ωt+ϕ)F(t)=F\cos(\omega t+\phi). Its equation of motion is

md2xdt2+kx=Fcos(ωt+ϕ)m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + kx=F\cos(\omega t+\phi)

Define the natural frequency ω0=k/m\omega_0=\sqrt{k/m} and f=F/mf=F/m. Then the equation becomes

d2xdt2+ω02x=fcos(ωt+ϕ)\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega_0^2 x = f\cos(\omega t+\phi)

This is an inhomogeneous second-order differential equation. To simplify, assume both initial position and velocity are zero, the solutions are:

  • Resonant case ω=ω0\omega=\omega_0: the position is x(t)=f2ω0tsinω0tx(t)=\frac{f}{2\omega_0} t \sin\omega_0 t, and the momentum is p(t)=f2ω0(sinω0t+ω0tcosω0t)p(t)=\frac{f}{2\omega_0}(\sin\omega_0 t + \omega_0 t \cos\omega_0 t). The position and momentum oscillate while growing linearly in time.

  • Detuned case ωω0\omega\neq \omega_0: the position is x(t)=fω02ω2[cosωtcosω0t]x(t)=\frac{f}{\omega_0^2-\omega^2}[\cos\omega t - \cos\omega_0 t], and the momentum is p(t)=fω02ω2[ω0sinω0tωsinωt]p(t)=\frac{f}{\omega_0^2-\omega^2}[\omega_0\sin\omega_0 t - \omega\sin\omega t]. The oscillator’s position and momentum only oscillate periodically.

Plotting the trajectories in phase space yields the two distinct behaviors. One spirals outward from the origin, similar to the displacement parameter α\alpha behaving like iηΩt\mathrm{i}\eta\Omega t. The other repeatedly loops around the origin, similar to 1eiΔt1-\mathrm{e}^{-\mathrm{i}\Delta t}.

However, these pictures are not fully clear because they include the oscillator’s dynamical phase, such as the sinω0t\sin\omega_0 t factor in tsinω0tt\sin\omega_0 t. This causes the resonantly driven oscillator to follow a spiral rather than a straight line in phase space. By applying a low-pass filter that removes the intrinsic oscillation at frequency ω0\omega_0 - analogous to transforming from the Schrödinger picture to the interaction picture in quantum mechanics - the resulting trajectories exactly match the expressions for α\alpha.

We may also describe the system using Lagrangian mechanics. The Lagrangian is

L=12mx˙212kx2+xF(t)L = \frac{1}{2} m\dot{x}^2 - \frac{1}{2} k x^2 + xF(t)

The Hamiltonian is

H=p22m+12kx2xF(t)H = \frac{p^2}{2m} + \frac{1}{2} k x^2 - xF(t)

After canonical quantization,

H(S)=p^22m+12kx^2x^F(t)H^{(\mathrm{S})} = \frac{\hat{p}^2}{2m} + \frac{1}{2} k \hat{x}^2 - \hat{x}F(t)

Substituting x^2mω0(a+a)\hat{x}\to\sqrt{\frac{\hbar}{2m \omega_0}} (a+a^\dagger) and p^2mω0i(aa)\hat{p} \to \sqrt{\frac{\hbar}{2m \omega_0}} \mathrm{i} (a-a^\dagger), we obtain

H(S)=ω0(aa+12)Fm2mω0(a+a)cos(ωt+ϕ)H^{(\mathrm{S})} = \hbar \omega_0 \left(a^\dagger a+\frac{1}{2} \right) - \frac{F}{m} \sqrt{\frac{\hbar}{2m \omega_0}} (a+a^\dagger) \cos(\omega t +\phi)

Define η=2mω0\eta=\sqrt{\frac{\hbar}{2m\omega_0}} and Ω=F/m\Omega=F/m. Transforming into the interaction picture and applying the rotating-wave approximation yields

H(I)=12ηΩ(aeiΔtiϕ+aeiΔt+iϕ)H^{(\mathrm{I})} = - \frac{1}{2}\eta\hbar\Omega \left(a \mathrm{e}^{\mathrm{i}\Delta t-\mathrm{i}\phi_-} + a^\dagger \mathrm{e}^{-\mathrm{i}\Delta t+\mathrm{i}\phi_-}\right)

This is exactly the motional part of the effective Hamiltonian used for bichromatic light–ion interaction. We may therefore conclude: A bichromatic light field acting on an ion is equivalent to applying a periodic driving force to its motion, with the driving frequency equals the frequency of the light field. The only difference is that the direction of this force depends on the ion’s spin state. If an ion in state \ket{\uparrow} is displaced in phase space by α\alpha under the bichromatic drive, then an ion in state \ket{\downarrow} will be displaced by α-\alpha. That’s why it’s called spin-dependent force.

Summary

  • On-resonant bichromatic field

    HbicηΩ(a+a)σϕH_\text{bic} \sim \eta\hbar\Omega (a+a^\dagger) \sigma_\phi

    UID(α(t)σϕ),αηΩtU^\mathrm{I} \sim D(\alpha(t)\sigma_\phi), \, |\alpha| \sim\eta\Omega t

  • Off-resonant bichromatic field

    HbicηΩ(aeiΔt+aeiΔt)σϕH_\text{bic} \sim \eta\hbar\Omega (a \mathrm{e}^{\mathrm{i}\Delta t} +a^\dagger \mathrm{e}^{-\mathrm{i}\Delta t}) \sigma_\phi

    UID[α(t)σϕ]eiΦ(t)U^\mathrm{I} \sim D[\alpha(t)\sigma_\phi] \, \mathrm{e}^{-\mathrm{i}\Phi(t)}

    αηΩΔ(1eiΔt)Φ(t)=(ηΩΔ)2(ΔtsinΔt)|\alpha| \sim \frac{\eta\Omega}{\Delta} (1-\mathrm{e}^{-\mathrm{i}\Delta t}) \qquad \Phi(t) =\left(\frac{\eta\Omega}{\Delta}\right)^2 (\Delta t - \sin \Delta t)


Second sideband

When considering the second sideband, the Taylor expansion of exp[iη(aeiνt+aeiνt)]\exp \left[\mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) \right] is

exp[iη(aeiνt+aeiνt)]=1+iη(aeiνt+aeiνt)η22(aeiνt+aeiνt)2+o(η3)\exp \left[\mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) \right]= 1 + \mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) - \frac{\eta^2}{2} (a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t})^2 +o(\eta^3)

Hint(I)=12Ωσeiϕeiδt[1η22(2aa+1)+iη(aeiνt+aeiνt)η22(a2ei2νt+a2ei2νt)]+h.c.H_\text{int}^\mathrm{(I)} = \frac{1}{2} \hbar \Omega \sigma^\dagger \mathrm{e}^{\mathrm{i}\phi}\mathrm{e}^{-\mathrm{i} \delta t} \left[1-\frac{\eta^2}{2}(2a^\dagger a+1) + \mathrm{i}\eta(a \mathrm{e}^{-\mathrm{i} \nu t}+a^\dagger \mathrm{e}^{\mathrm{i} \nu t}) - \frac{\eta^2}{2} (a^2 \mathrm{e}^{-\mathrm{i} 2\nu t}+a^{\dagger 2} \mathrm{e}^{\mathrm{i} 2\nu t})\right] + \mathrm{h.c.}

By changing the detuning δ\delta, we can obtain

  • δ=2ν\delta = -2\nu, second red sideband, Hrsb2=14η2Ω(σa2eiϕ+σa2eiϕ)=14η2Ωσa2eiϕ+h.c.H_\text{rsb2} = -\frac{1}{4} \eta^2 \hbar \Omega (\sigma^\dagger a^2 \mathrm{e}^{\mathrm{i}\phi} + \sigma a^{\dagger 2} \mathrm{e}^{-\mathrm{i}\phi}) =-\frac{1}{4} \eta^2 \hbar \Omega \sigma^\dagger a^2 \mathrm{e}^{\mathrm{i}\phi} + \mathrm{h.c.}
  • δ=2ν\delta = 2\nu, second blue sideband, Hbsb2=14η2Ω(σa2eiϕ+σa2eiϕ)=14η2Ωσa2eiϕ+h.c.H_\text{bsb2} = -\frac{1}{4} \eta^2 \hbar \Omega (\sigma^\dagger a^{\dagger 2} \mathrm{e}^{\mathrm{i}\phi} + \sigma a^2 \mathrm{e}^{-\mathrm{i}\phi}) =-\frac{1}{4} \eta^2 \hbar \Omega \sigma^\dagger a^{\dagger 2} \mathrm{e}^{\mathrm{i}\phi} + \mathrm{h.c.}

The bichromatic field constituted by two second sideband light are

Hbic2=14η2Ω(σa2eiϕr+σa2eiϕr+σa2eiϕb+σa2eiϕb)H_\text{bic2} = -\frac{1}{4} \eta^2 \hbar \Omega (\sigma^\dagger a^2 \mathrm{e}^{\mathrm{i}\phi_r} + \sigma a^{\dagger 2} \mathrm{e}^{-\mathrm{i}\phi_r} + \sigma^\dagger a^{\dagger 2} \mathrm{e}^{\mathrm{i}\phi_b} + \sigma a^2 \mathrm{e}^{-\mathrm{i}\phi_b})

Still defining ϕ+=(ϕb+ϕr)/2,ϕ=(ϕbϕr)/2\phi_+ = (\phi_b + \phi_r)/2,\phi_- = (\phi_b - \phi_r)/2 , then the Hamiltonian takes the form

Hbic2=12η2Ω(a2eiϕ+a2eiϕ)(σxcosϕ+σysinϕ+)H_\text{bic2} = -\frac{1}{2} \eta^2 \hbar \Omega (a^2 \mathrm{e}^{-\mathrm{i}\phi_-} + a^{\dagger 2} \mathrm{e}^{\mathrm{i}\phi_-})(\sigma_x \cos\phi_+ -\sigma_y \sin\phi_+)

The evolution operator is thus

UI=exp(iHbic2t)=exp[i2η2Ωt(a2eiϕ+a2eiϕ)σϕ+]=S(ξσϕ+)U^\mathrm{I} = \exp\left(-\frac{\mathrm{i}}{\hbar}H_\text{bic2}t\right) = \exp\left[\frac{\mathrm{i}}{2} \eta^2 \Omega t (a^2 \mathrm{e}^{-\mathrm{i}\phi_-} + a^{\dagger 2} \mathrm{e}^{\mathrm{i}\phi_-}) \sigma_{-\phi_+}\right] = S(\xi \sigma_{-\phi_+} )

where SS is the squeezing operator

S(ξ)=exp(12ξa212ξa2),ξ=i2η2ΩteiϕS(\xi)=\exp \left(\frac{1}{2}{\xi^* a^2 -\frac{1}{2} \xi a^{\dagger 2}}\right) ,\quad \xi = -\frac{\mathrm{i}}{2}\eta^2 \Omega t \mathrm{e}^{\mathrm{i}\phi_-}