Quantum Computing I Bloch Sphere
fengxiaot Lv4

The Bloch sphere is a geometric representation of qubit states as points on the surface of a unit sphere. Many operations on single qubits that are commonly used in quantum information processing can be neatly described within the Bloch sphere picture.

Bloch Sphere

Bloch Sphere

A pure state ψ\ket{\psi} is a representative of a equivalence class

{eiχψαR}\{ \mathrm{e}^{\mathrm{i}\chi} \ket{\psi}\mid\alpha\in\mathbb{R}\}

One can map the state space of a two-level system C2\mathbb{C}^2 to the unit 3D sphere S2S^2 by[1]

ψ=cosθ21+eiϕsinθ20\ket{\psi} = \cos\frac{\theta}{2} \ket{1}+\mathrm{e}^{\mathrm{i}\phi }\sin\frac{\theta}{2} \ket{0}

n(θ,ϕ)=(sinθcosϕ,sinθsinϕ,cosθ)\boldsymbol{n}(\theta,\phi)=(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)

where θ[0,π]\theta \in [0,\pi] and ϕ[0,2π)\phi \in [0,2\pi).

Bloch vector

We set the basis of the state space to {1,0}\{\ket{1},\ket{0}\}, which means 1=(10)\ket{1}=\begin{pmatrix}1\\ 0\end{pmatrix} and 0=(01)\ket{0}=\begin{pmatrix}0 \\ 1\end{pmatrix}.

/* Note: This definition is different from the order of kets that are usually chosen. The advantage of this kind of choice is that the Hamiltonian will have the form H=12ω0σzH = \frac{1}{2} \hbar \omega_0 \sigma_z instead of σz-\sigma_z, since we set 0g\ket{0} \equiv \ket{g} and 1e\ket{1} \equiv \ket{e}. */

State Coordinates on S2S^2 (θ,ϕ)(\theta,\phi) Ket Vector
+z1\ket{+}_z \equiv\ket{1} (0,0,1)(0,0,1) (0,0)(0,0) 1\ket{1} (10)\begin{pmatrix}1\\ 0\end{pmatrix}
z=0\ket{-}_z=\ket{0} (0,0,1)(0,0,-1) (π,0)(\pi,0) 0\ket{0} (01)\begin{pmatrix}0 \\ 1\end{pmatrix}
+x\ket{+}_x (1,0,0)(1,0,0) (π2,0)(\frac{\pi}{2},0) 1+02\frac{\ket{1}+\ket{0}}{\sqrt{2}} 12(11)\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ 1\end{pmatrix}
x\ket{-}_x (1,0,0)(-1,0,0) (π2,π)(\frac{\pi}{2},\pi) 102\frac{\ket{1}-\ket{0}}{\sqrt{2}} 12(11)\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ -1\end{pmatrix}
+y\ket{+}_y (0,1,0)(0,1,0) (π2,π2)(\frac{\pi}{2},\frac{\pi}{2}) 1+i02\frac{\ket{1}+\mathrm{i}\ket{0}}{\sqrt{2}} 12(1i)\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ \mathrm{i}\end{pmatrix}
y\ket{-}_y (0,1,0)(0,-1,0) (π2,3π2)(\frac{\pi}{2},\frac{3\pi}{2}) 1i02\frac{\ket{1}-\mathrm{i}\ket{0}}{\sqrt{2}} 12(1i)\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ -\mathrm{i}\end{pmatrix}

Theorem Antipodal points on the Bloch sphere corresponds to a pair of mutually orthogonal state vectors.

Rotation

A anticlockwise rotation around n^\hat{n} by θ\theta on the Bloch sphere is described by rotation operator

R(θ)=exp[i2θ(n^σ)]R(\theta) = \exp\left[-\frac{\mathrm{i}}{2} \theta (\hat{n}\cdot{\boldsymbol{\sigma}})\right]

Rotation around the x,y,z axis are

Rx=exp(i2θσx)=(cosθ2isinθ2isinθ2cosθ2)R_x= \exp\left(-\frac{\mathrm{i}}{2} \theta \sigma_x\right)= \begin{pmatrix} \cos\frac{\theta}{2} & -\mathrm{i}\sin\frac{\theta}{2} \\ -\mathrm{i}\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}

Ry=exp(i2θσy)=(cosθ2sinθ2sinθ2cosθ2)R_y= \exp\left(-\frac{\mathrm{i}}{2} \theta \sigma_y\right)= \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}

Rz=exp(i2θσz)=(eiθ/200eiθ/2)R_z= \exp\left(-\frac{\mathrm{i}}{2} \theta \sigma_z\right)= \begin{pmatrix} \mathrm{e}^{-\mathrm{i}\theta/2} & 0 \\ 0 & \mathrm{e}^{\mathrm{i}\theta/2} \end{pmatrix}

Rotation around (cosϕ,sinϕ,0)(\cos\phi,\sin\phi,0) is defined as RϕR_\phi, with

Rϕ(θ)=exp(i2θσϕ)=(cosθ2ieiϕsinθ2ieiϕsinθ2cosθ2)R_\phi(\theta)= \exp\left(-\frac{\mathrm{i}}{2} \theta \sigma_\phi\right)= \begin{pmatrix} \cos\frac{\theta}{2} & -\mathrm{i}\mathrm{e}^{-\mathrm{i}\phi}\sin\frac{\theta}{2} \\ -\mathrm{i}\mathrm{e}^{\mathrm{i}\phi}\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}



  1. Bloch sphere by Cmglee is licensed under CC BY-SA 4.0. Available at https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg. ↩︎